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ABSTRACT

It is known that there is a much closed relationship between saddle and

in�ection points. It was shown in one of the research papers that a con-

nection between the saddle points of functions of two variables with the

in�ection points of functions of one variable and the researcher claimed

that he has not found any references to this result in the literature. How-

ever, the author himself worried by asking whether there always exists

such a one variable function that is di�erentiable at the saddle point or

not. In this paper, it will be proposed two results for relationship be-

tween the saddle and in�ection points through the quadratic functions

of two variables and two linear and non-linear functions of one variable.

These results will be supported with several numerical examples.
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1. Introduction

The results of the research of surfaces of f : R2 → R, show that there
exist some similarities between in�ection points on curves and saddle points on
surfaces.

In this paper, a direct connection between the two concepts are explained
deeply. For this purpose, it is assumed that f(x, y) has continuous second
partial derivatives in an open set of the plane and that (a, b) is a critical point
in that set. This means that the �rst derivative of f(x, y) with respect to x
and y are zeros. Therefore

∂

∂x
f(x, y)

∣∣∣
(a,b)

= fx(a, b) = 0, and
∂

∂y
f(x, y)

∣∣∣
(a,b)

= fy(a, b) = 0

For convenience, suppose that

A = fxx(a, b), B = fxy(a, b), and C = fyy(a, b).

Then (Hass and Weir (2018)), the standard second derivative test for ex-
treme points of functions of two variables, uses the determinant

D =

∣∣∣∣A B
B C

∣∣∣∣ = AC −B2

are (i) f has a local maximum point at (a, b) if D > 0 and A < 0; (ii) f has a
local minimum point at (a, b) if D > 0 and A > 0; (iii) f has a saddle point at
(a, b) if D < 0 , and (iv) the second derivative test is inconclusive if D = 0.

A su�cient existence condition for a point of in�ection is "if f(x) is k times
continuously di�erentiable in a certain neighborhood of a point x0 with k odd
and k ≥ 3 , while f (n)(x0) = 0 for n = 2, ..., k− 1, and f (k)(x0) 6= 0, then f(x)
has a point of in�ection at x0" ((Dixon and Szego (1975)), (Wilde (1964)),
(Horst and Tuy (1990))).

In our discussion, it is easier if we use the quadratic form
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F (x, y) =
[
x y

] [A B
B C

] [
x
y

]
= Ax2 + 2Bxy + Cy2.

where if (a, b) is a saddle point of f , then F (x, y) is inde�nite in the sense
that there exist two points (x1, y1) and (x2, y2) with x1, x2 6= 0 for which
F (x1, y1) > 0 and F (x2, y2) < 0 .

2. Result

In (de la Rosa (2007)), we are given the following theorem.

Theorem 2.1. If (1) f(x, y) is a function with continuous second partial
derivatives in an open set U in the plane, (2) (a, b) is a saddle point in U ,
then there exists a continuous function y = g(x) with g(a) = b for which the
projection on the xz-plane of the intersection of the surface z = f(x, y) and the
cylindrical surface y = g(x) has an in�ection point at x = a.

In his proof, for satisfying the hypothesis of the theorem, the author has
used a continuous linear function de�ned by

g(x) =

{
g1(x) (x < a)
g2(x) (a ≤ x)

where
gj(x) =

yj
xj

(x− a) + b, (j = 1, 2).

By taking uj(x) = f(x, gj(x)), (j = 1, 2), the author has shown that (i) u
′

1(a) =

0 and u
′′

1 (a) > 0 for (x1, y1) which satis�es F (x1, y1) > 0 and (ii) u
′

2(a) = 0
and u

′′

2 (a) < 0 for (x2, y2) which satis�es F (x2, y2) < 0.

However, according to the formula of g(x), we have

g1(a) = g2(a) = b, g′1(a) =
y1
x1

and g′2(a) =
y2
x2

.
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Therefore, if (y1 ÷ x1) 6= (y2 ÷ x2), then g(x) satis�es the Theorem 2.1 but
is not di�erentiable at x = a since (x1, y1) and (x2, y2) are di�erent points such
that F (x1, y1) > 0 and F (x2, y2) < 0. If (y1 ÷ x1) = (y2 ÷ x2), then

F (x1, y1) =
x2
1

x2
2

F (x2, y2).

Therefore both F (x1, y1) and F (x2, y2) have the same sign. Therefore, F (x, y)
is not inde�nite. Whence, (a, b) is not a saddle point.

The above discussion proves the following theorem.

Theorem 2.2. If (1) f(x, y) is a function with continuous second partial
derivatives in an open set U in the plane, (2) (a, b) is a saddle point in U,
and (3) a piecewise linear continuous function y = g(x) with g(a) = b and not
di�erentiable at x = a, then the projection on the xz-plane of the intersection
of the surface z = f(x, y) and the cylindrical surface y = g(x) has an in�ection
point at x = a.

Furthermore, in this paper, we proposed one more theorem to answer the
question in de la Rosa (2007) which asking whether there always exists such a
function g(x) that is di�erentiable at x = a for Theorem 2.1.

Theorem 2.3. If (1) f is a function with continuous second partial derivatives
in an open set U in the plane, (2) (a, b) is a saddle point in U, then there exists
a continuous function y = g(x) = x2 + qx + r with g(a) = b for which the
projection on the xz-plane of the intersection of the surface z = f(x, y) and the
cylindrical surface y = g(x) has an in�ection point at x = a.

Proof. By hypothesis, there exist points (x1, y1) and (x2, y2) with x1, x2 6= 0
for which F (x1, y1) > 0 and F (x2, y2) < 0.

Suppose that u1(x) = f(x, g(x)). The �rst derivative of u1(x) is given by

u
′

1(x) = fx(x, g(x)) + fg(x, g(x))g
′
(x)

and the second derivative of u1(x) is given by

u
′′

1 (x) = fxx(x, g(x)) + fxg(x, g(x))g
′
(x)

+ g
′
(x)(fxg(x, g(x)) + fgg(x, g(x))g

′
(x))

+ fg(x, g(x))g
′′
(x)
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Since fg(a, g(a)) = 0, we obtain

u
′′

1 (a) = fxx(a, g(a)) + 2fxg(a, g(a))g
′
(a) + fgg(a, g(a))(g

′
(a))2

= fxx(a, b) + 2fxg(a, b)g
′
(a) + fgg(a, b)(g

′
(a))2

By
g(a) = a2 + qa+ r = b,

we obtain r = b− a2 − qa. Thus

g(x) = x2 + qx+ b− (a2 + qa)

and
g

′
(a) = 2a+ q.

But, by the previous discussion, we can put that g′(x) = (y1 ÷ x1). There-
fore, we obtain g′(a) = 2a+ q = (y1 ÷ x1) and

u
′′

1 (a) = fxx(a, b) + 2fxg(a, b)
y1
x1

+ fgg(a, b)(
y1
x1

)2

=
1

x2
1

(fxx(a, b)x
2
1 + 2fxg(a, b)x1y1 + fgg(a, b)y

2
1)

=
1

x2
1

F (x1, y1) > 0.

Furthermore, by taking u2(x) = f(x, g(x)) and y2 = (2a+ q)x2, we will obtain

u
′′

2 (a) = fxx(a, b) + 2fxg(a, b)
y2
x2

+ fgg(a, b)(
y2
x2

)2

=
1

x2
2

(fxx(a, b)x
2
2 + 2fxg(a, b)x2y2 + fgg(a, b)y

2
2)

=
1

x2
2

F (x2, y2) < 0.

Then, g(x) satis�es the theorem and di�erentiable at x = a. Therefore g is
continuous at x = a and g(a) = b. Thus the theorem valid.
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3. Numerical Results

Example 3.1. In (de la Rosa, 2007), according to Theorem 2.1, the example
to be considered is given by

z = f(x, y) = −x2 + y2 and y = x− x2.

By substituting y into z, the projection on the xz-plane, is given by z = x3(x−2)
which has a point of in�ection at x = 0.

Example 3.2. According to Theorem 2.3, the example to be considered is given
by

z = f(x, y) = −x2 + y2

which has a saddle point at (0, 0). For (x1, y1) = (1, 2) and (x2, y2) = (2, 1),
F (x1, y1) > 0 and F (x2, y2) < 0. From

g(x) = x2 + qx+ r,

and substitute x with 0 to give

g(0) = 0 + q(0) + r

which gives r = 0. Thus we have g(x) = x2 + qx. By intersection between the
surfaces z = f(x, y) and g(x) = x2 + qx, to give

z(x) = −x2 + (x2 + qx)2

from which we obtain

z
′′
(x) = −2 + 2((2x+ q)2 + 2(x2 + qx)).

At x = 0, z
′′
(0) = 0 will yields q = 1 and q = −1. Therefore, by substituting

q = 1 and q = −1 into z(x) separately, we can observe that the projections on
the xz-plane have a point of in�ection at x = 0 for both q = 1 and q = −1 with
z = x3(x+ 2) and z = x3(x− 2)(see Example 3.1) respectively.

4. Discussion

As mentioned in Theorem 2.2, we would like to make some note on a
piecewise linear function y = g(x) as follows. For Example 3.1, if we let
(x1, y1) = (1,m) and (x2, y2) = (m, 1) where m 6= −1, 0, 1, then
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F (1,m) =

{
> 0 ((m > 1) ∨ (m < −1))
< 0 ((0 < m < 1) ∨ (−1 < m < 0))

and

F (m, 1) =

{
< 0 ((m > 1) ∨ (m < −1))
> 0 ((0 < m < 1) ∨ (−1 < m < 0))

Therefore, if we let

g(x) =

{
mx (((x < 0) ∧ (m > 1)) ∨ ((x < 0) ∧ (m < −1)))
1
mx (((0 ≤ x) ∧ (m > 1)) ∨ ((0 ≤ x) ∧ (m < −1)))

then we obtain

z1(x) =

{
(m2 − 1)x2 (((x < 0) ∧ (m > 1)) ∨ ((x < 0) ∧ (m < −1)))
( 1
m2 − 1)x2 (((0 ≤ x) ∧ (m > 1)) ∨ ((0 ≤ x) ∧ (m < −1)))

Furthermore, if we let

g(x) =

{
mx (((x < 0) ∧ (0 < m < 1)) ∨ ((x < 0) ∧ (−1 < m < 0)))
1
mx (((0 ≤ x) ∧ (0 < m < 1)) ∨ ((0 ≤ x) ∧ (−1 < m < 0)))

then we obtain

z2(x) =

{
(m2 − 1)x2 ; (((x < 0) ∧ (0 < m < 1)) ∨ ((x < 0) ∧ (−1 < m < 0)))
( 1
m2 − 1)x2 ; (((0 ≤ x) ∧ (0 < m < 1)) ∨ ((0 ≤ x) ∧ (−1 < m < 0)))

By observing z1(x) and z2(x), it is clear that the projection on the xz-
plane has a point of in�ection at x = 0 since z1(x) is convex upward for (x <
0) ∧ (m > 1) and is convex downward for (0 ≤ x) ∧ (m > 1). In contrast,
z2(x) is convex downward for (x < 0) ∧ (0 < m < 1) and is convex upward for
(0 ≤ x) ∧ (0 < m < 1).

5. Conclusion

In this paper, it has been shown that there is a strong relationship between
saddle point of quadratic function of two variables with in�ection point of linear
piecewise function of one variable. The relationship is also can be extended to
a quadratic function of one variable. By these remarks, it can be concluded
that there exists such a function g(x) that is di�erentiable at x = a.
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